The hard way:
The first equation is that of a plane with normal $(1,1,1)$ and this direction is that of an axis of symmetry of the problem.
We will rotate it to bring it to a $u$ axis, using the similarity transform
$$\begin{cases}x=\sqrt2 u-\sqrt3 v+w,\\y=\sqrt2u+\sqrt3v+w,\\z=\sqrt2u\ \ \ \ \ \ \ \ \ \ -2w.\end{cases}$$
Then
$$x+y+z=3\sqrt2u=6,\\
u=\sqrt2.$$
(A plane perpendicular to $u$.)
$$x^2+y^2+z^2=6(u^2+v^2+w^2)=14,\\v^2+w^2=\frac13.$$
(A cylindre of axis $u$.)
$$x^3+y^2+z^3=18\sqrt2uv^2+18\sqrt2uw^2+6\sqrt2u^3+18wv^2-6w^3\\
=18\sqrt2uv^2+18\sqrt2uw^2+18\sqrt2uu^2-12\sqrt2u^3+18wv^2-6w^3\\
=42\sqrt2u-12\sqrt2u^3+18wv^2-6w^3=36,\\
3wv^2=w^3.
$$
(Three planes intersecting on $u$.)
This gives the six solutions
$$v=\pm\frac1{\sqrt3},w=0\lor v=\pm\frac1{2\sqrt3},w=\pm\frac12,$$
i.e.
$$\begin{cases}x=2\mp1,\\
y=2\pm1,\\
z=2,\end{cases}$$
or
$$\begin{cases}x=2\mp\dfrac12\pm\dfrac12,\\
y=2\pm\dfrac12\pm\dfrac12,\\
z=2\ \ \ \ \ \ \ \ \ \mp1.\end{cases}$$
As expected, the six permutations of $(1,2,3)$.