$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With $\ds{\Re\pars{s} < 0}$:
\begin{align}
\left.\sum_{n = 0}^{\infty}{\Gamma\pars{n + s} \over n!}
\,\right\vert_{\ \Re\pars{s}\ <\ 0} & =
\pars{s - 1}!\sum_{n = 0}^{\infty}{n + s - 1 \choose n} =
\pars{s - 1}!\sum_{n = 0}^{\infty}{-s \choose n}\pars{-1}^{n}
\\[5mm] & =
\pars{s - 1}!\,\bracks{1 + \pars{-1}}^{\,-s} = \bbx{\ds{0}}
\end{align}