Question:
Given $a_{n+1} = a_{n}+\sqrt{1+a^2_{n}}$ and $a_{0}=0$ and $a_{1} = 1,$ find $\displaystyle \lim_{n\rightarrow \infty}\left(\frac{a^2_{n}}{2^{n-1}}\right)$.
Attempt:
Assume $a_{n} = \cot \alpha_{n},$ then $\displaystyle \cot \alpha_{n+1} = \cot \alpha_{n}+\cos \alpha_{n} = \cot\frac{\alpha_{n}}{2}$.
Could someone help me?