Let $R$ be a commutative ring and $f\colon A\rightarrow B$, $f'\colon A'\rightarrow B'$ two maps of $R$-modules.
Is there a way to express the cokernel $\operatorname{coker} (f\otimes f')$ in terms of the cokernels of $f$ and $f'$?
By tensoring $f$ with the identity on $R$, we get $\operatorname{coker}(f)\cong \operatorname{coker}(f\otimes \operatorname{id} )$, so in particular we do not have $\operatorname{coker}(f\otimes \operatorname{id} )=\operatorname{coker}(f)\otimes \operatorname{coker}(\operatorname{id} )$ as $\operatorname{coker}(id)=0$.