I know that one formulation of Baire's theorem is:
If $(M,d)$ is a complete metric space and $\{A_n\}_{n\in\mathbb{N}}$ is a sequence of closed subsets such that $M=\bigcup_{n\in\mathbb{N}}A_n$, then there exists $n_*\in\mathbb{N}$ such that $\operatorname{int}(A_{n_*})\neq\emptyset$.
This is in fact equivalent to the stronger-seeming statement:
If $(M,d)$ is a complete metric space and $\{A_n\}_{n\in\mathbb{N}}$ is a sequence of closed subsets such that $\operatorname{int}(A_{n})=\emptyset$ for all $n\in\mathbb{N}$, then $\operatorname{int}\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\emptyset$.
This inspires the following definition:
A topological space $(X,\mathcal{T})$ is a Baire space if and only if for every sequence $\{A_n\}_{n\in\mathbb{N}}$ of closed subsets such that $\operatorname{int}(A_{n})=\emptyset$ for all $n\in\mathbb{N}$, then $\operatorname{int}\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\emptyset$.
Is it true that if for a topological space $(X,\mathcal{T})$ we have that for every sequence $\{A_n\}_{n\in\mathbb{N}}$ of closed subsets with $X=\bigcup_{n\in\mathbb{N}}A_n$ there exists $n_*\in\mathbb{N}$ such that $\operatorname{int}(A_{n_*})\neq\emptyset$, then $X$ is a Baire-space?