How do we show that?
$$\int_{0}^{\pi}(1+2x)\cdot{\sin^3(x)\over 1+\cos^2(x)}\mathrm dx=(\pi+1)(\pi-2)\tag1$$
$(1)$ it a bit difficult to start with
$$\int_{0}^{\pi}(1+2x)\cdot{\sin(x)[1-\sin^2(x)]\over 1+\cos^2(x)}\mathrm dx\tag2$$
Setting $u=\cos(x)$
$du=-\sin(x)dx$
$$\int_{-1}^{1}(1+2x)\cdot{(u^2)\over 1+u^2}\mathrm du\tag3$$
$$\int_{-1}^{1}(1+2\arccos(u))\cdot{(u^2)\over 1+u^2}\mathrm du\tag4$$
$du=\sec^2(v)dv$
$$\int_{-\pi/4}^{\pi/4}(1+2\arccos(\tan(v)))\tan^2(v)\mathrm dv\tag5$$
$$\int_{-\pi/4}^{\pi/4}\tan^2(v)+2\tan^2(v)\arccos(\tan(v))\mathrm dv=I_1+I_2\tag6$$
$$I_1=\int_{-\pi/4}^{\pi/4}\tan^2(v)\mathrm dv=2-{\pi\over2}\tag7$$
As for $I_2$ I am sure how to do it.