Let $\mathrm Q : = \frac 12 \left( \mathrm M + \mathrm M^{\top}\right)$ be the symmetric part of $\mathrm M$. Consider the following binary quadratic program
$$\begin{array}{ll} \text{minimize} & \mathrm x^{\top} \mathrm Q \,\mathrm x\\ \text{subject to} & \mathrm x \in \{\pm 1\}^n\end{array}$$
or, equivalently, the following quadratically constrained quadratic program (QCQP)
$$\begin{array}{ll} \text{minimize} & \mathrm x^{\top} \mathrm Q \,\mathrm x\\ \text{subject to} & x_i^2 = 1 \quad \forall i \in [n]\\ & \mathrm x \in \mathbb R^n\end{array}\tag{QCQP}$$
where $[n] := \{1,2,\dots,n\}$. Both optimization problems above are hard (even when $\mathrm Q \succeq \mathrm O_n$).
Primal relaxation
$$\mathrm x^{\top} \mathrm Q \,\mathrm x = \mbox{tr} (\mathrm x^{\top} \mathrm Q \,\mathrm x) = \mbox{tr} (\mathrm Q \,\mathrm x \mathrm x^{\top})$$
where $\mathrm x \mathrm x^{\top}$ is symmetric, positive semidefinite, rank-$1$ and has $n$ ones on its main diagonal. Lifting, we obtain the following (non-convex) optimization problem
$$\begin{array}{ll} \text{minimize} & \mbox{tr} (\mathrm Q \mathrm X)\\ \text{subject to} & \mathrm X_{ii} = 1 \quad \forall i \in [n]\\ & \mathrm X \succeq \mathrm O_n\\ & \mbox{rank} (\mathrm X) = 1\end{array}$$
Dropping the non-convex rank constraint, we obtain the following semidefinite program (SDP)
$$\begin{array}{ll} \text{minimize} & \mbox{tr} (\mathrm Q \mathrm X)\\ \text{subject to} & \mathrm X_{ii} = 1 \quad \forall i \in [n]\\ & \mathrm X \succeq \mathrm O_n\end{array}$$
which is easy to solve. If the solution of this SDP, which we denote by $\mathrm X^*$, is
- rank-$1$, then we have solved the original QCQP.
- not rank-$1$, then we do need a rounding scheme.
If matrix $\mathrm Q$ is nonnegative with zeros on the main diagonal, then it is the adjacency matrix of an undirected, weighted graph and we can use Goemans & Williamson's famous randomized rounding scheme for MAX CUT [MG&DW'95, BG&JM'12].
Dual
The QCQP yields the following Lagrangian
$$\mathcal{L} (\mathrm x, \lambda) := \mathrm x^{\top} \mathrm Q \,\mathrm x - \sum_{i=1}^n \lambda_i (x_i^2 - 1) = \mathrm x^{\top} \left( \mathrm Q - \mbox{diag} (\lambda) \right) \mathrm x + 1_n^{\top} \lambda$$
The dual of the QCQP [PP&SL'03, PP&SL'06] is, thus,
$$\begin{array}{ll} \text{maximize} & 1_n^{\top} \lambda\\ \text{subject to} & \mbox{diag} (\lambda) \preceq \mathrm Q\end{array}$$
Hence, we have the following SDP in $\Lambda$
$$\begin{array}{ll} \text{maximize} & \mbox{tr} (\Lambda)\\ \text{subject to} & \Lambda_{ij} = 0 \quad \forall i \neq j\\ & \Lambda \preceq \mathrm Q\end{array}$$
which is convex and, thus, easy (unlike the QCQP). This SDP does provide a lower bound on the minimum of the QCQP. If $\mathrm x \in \{\pm 1\}^n$ is in the feasible region of the QCQP, then
$$\mathrm x^{\top} \mathrm Q \,\mathrm x \geq \mathrm x^{\top} \Lambda \,\mathrm x = \sum_{i=1}^n \Lambda_{ii} x_i^2 = \sum_{i=1}^n \Lambda_{ii} = \mbox{tr} (\Lambda)$$
References
[MG&DW'95] Michel X. Goemans, David P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM, Vol. 42, No. 6, November 1995.
[BG&JM'12] Bernd Gärtner, Jiří Matoušek, Approximation Algorithms and Semidefinite Programming, Springer 2012.
[PP&SL'03] Pablo Parrilo, Sanjay Lall, Quadratically Constrained Quadratic Programming, 2003.
[PP&SL'06] Pablo Parrilo, Sanjay Lall, Quadratically Constrained Quadratic Programming, 2006.