Let $X$ be a standard normal random variable, with $a,b>0$ and $a-b>0$, prove that $$\lim_{\epsilon\to 0}\epsilon^2\log P(|\epsilon X -a|<b)=-\frac{(a-b)^2}{2}$$
I'm studying for a qual and this was a previous problem (problem 6b). From part a, we know $\lim_{\epsilon\to 0} P(|\epsilon X -a|<b)=0$
I tried using L'Hopital's rule:
$$\frac{\log P(|\epsilon X -a|<b)}{1/\epsilon^2}=\frac{1}{-2/\epsilon^3}\frac{1}{P(|\epsilon X -a|<b)}\frac{d}{d\epsilon }P(|\epsilon X -a|<b)$$
Then we need to compute $\frac{d}{d\epsilon }P(|\epsilon X -a|<b)$:
$$\frac{d}{d\epsilon }P(|\epsilon X -a|<b)=\frac{d}{d\epsilon} \int_{(a-b)/\epsilon}^{(a+b)/\epsilon} \frac{1}{\sqrt{2\pi}}e^{-t^2/2}~dt$$
Here is where I am stuck. Of course I can use fundamental theorem of calculus but it turns into a huge mess. How do I proceed from here?