Let $V$ be a vector space and $f$ a nonzero linear functional on $V$. Then $\text{dim image}(f)=1$ and $\text{dim null}(f)+\text{dim image}(f)=\text{dim}V$. And if $\text{dim}V<\infty$, then $\text{dim null}(f)=\text{dim}V-1$.
I'm confused as to why $V$ needs to be finite dimensional in order to conclude $\text{dim null}(f)=\text{dim}V-1$. Can't we just say that if $\text{dim}V\not<\infty$, we have $\text{dim}V-1=\text{dim}V$?