If $X_i$ iid with variance $\sigma$ then I want to prove that $S_n^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i -\bar X_n )^2$ is an unbiased estimate of the variance $\sigma$. So here I go:
\begin{equation} \begin{aligned} \mathbb{E}(S_n ^2)&= \frac{1}{n-1}\sum_{i=1} ^{n} \mathbb{E}(X_i -\bar X_n )^2\\ &= \frac{1}{n-1}\sum_{i=1} ^{n} \mathbb{E}(X_i^2 -2X_i\bar X_n + \bar X_n^2) \\ &= \frac{1}{n-1}\sum_{i=1} ^{n} \mathbb{E}(X_i^2 -\frac{2}{n}X_i ^2 -\frac{2}{n}\sum_{j\neq i} X_i X_j + \bar X_n^2)\\ &= \frac{1}{n-1}\left\{ (n-2)\mathbb{E}(X_1 ^2) -\frac{2}{n}\sum_{i=1} ^{n}\sum_{j\neq i}\mathbb{E}(X_i)\mathbb{E}(X_j) + \sigma ^2 + \mathbb{E}(X_1)^2 \right\} \end{aligned} \end{equation} where I used the fact that for $X_i$, $X_j$ independent we have $\mathbb{E}(X_i X_j) = \mathbb{E}(X_i)\mathbb{E}X_j)$ and that $\mathbb{E}(\bar X_n ^2) = \frac{\sigma^2 + \mathbb{E}(X_1)^2}{n}$. Finally, after rearranging the first and last terms:
\begin{equation} \begin{aligned} \mathbb{E}(S_n ^2) &= \frac{1}{n-1}\left\{ (n-1)\mathbb{E}(X_1 ^2) -\frac{2}{n}n(n-1)\mathbb{E}(X_1)^2 \right\}\\ &= \mathbb{E}(X_1 ^2) -2\mathbb{E}(X_1)^2\\ &\neq \mathbb{E}(X_1 ^2) -\mathbb{E}(X_1)^2 \end{aligned} \end{equation}
I'm off by a factor $2$. Can someone help me point out my mistake?