Challenge question: solve $$\int_0^{\pi/2} {\sin x \cos x \sqrt{\tan x} \ln{\tan x} \,dx}$$
It's a generalization of a recent Math.SE question, but how would one normally approach it?
Challenge question: solve $$\int_0^{\pi/2} {\sin x \cos x \sqrt{\tan x} \ln{\tan x} \,dx}$$
It's a generalization of a recent Math.SE question, but how would one normally approach it?
Hint. By the change of variable $$ \sqrt{\tan x}=t,\quad x=\arctan (t^2),\quad dx=\frac{2t\:dt}{1+t^4}, $$ one gets
$$ \int_0^{\pi/2} {\sin x \cos x \sqrt{\tan x} \ln{\tan x} \,dx}=\int_0^\infty \frac{4t^4\ln t}{\left(1+t^4\right)^2}\:dt=\frac{\pi \sqrt{2}}{4}-\frac{\pi ^2\sqrt{2}}{16}. \tag1 $$
Addendum. One may recall the identity $$ \int_0^\infty\frac{x^\alpha}{1+x}\:dx=-\frac{\pi}{\sin \alpha \pi}, \quad -1<\alpha<0, \tag2 $$ giving, with an integration by parts, $$ \int_0^\infty\frac{x^\alpha}{(1+x)^2}\:dx=\frac{\alpha \pi}{\sin \alpha \pi}, \quad -1<\alpha<1 \tag3 $$ differentiating $(3)$ yields $$ \int_0^\infty\frac{x^\alpha\ln x}{(1+x)^2}\:dx=\frac{\pi}{\sin \alpha \pi}-\frac{\pi^2\alpha \cos \alpha \pi}{\sin^2 \alpha \pi}, \quad -1<\alpha<1, \tag4 $$ then putting $x=t^4$, $\alpha=\frac14$ gives $(1)$.
\begin{align} &\int_0^{\pi/2} {\sin x \cos x \sqrt{\tan x} \ln{(\tan x)} \,dx}\\ =& - \frac12 \int_0^{\pi/2} \sqrt{\tan x}\ln (\tan x) \ d( \cos^2 x) \overset{ibp}= \frac12\int_0^{\pi/2}\frac{1+\ln \sqrt{\tan x}}{\sqrt{\tan x}}\ dx\\ =& \int_0^\infty \frac{1+\ln t}{1+t^4}dt =\frac{\pi }{2 \sqrt{2}}-\frac{\pi ^2}{8\sqrt{2}} \end{align}
Write $\ln\tan x=\ln\sin x-\ln\cos x$, replace $\sqrt{\tan x}$ also, and do the integral of the two summands separately. For the first summand put $u=\sin x$ and integrate by parts. For the second summand put $u=\cos x$.
hint
Use $$\cos(x)\sin(x)=\frac{\tan(x)}{1+\tan^2(x)}$$ and put $$t=\tan(x)$$.