3

Here $A^{\dagger}$ is the Moore-Penrose pseudo-inverse and $\geq$ denotes the Loewner partial order for positive semidefinite matrices.

I know that the statement is true for non-singular matrices, but cannot find whether this extends to singular matrices, and continuity arguments seem to not apply here.

Any help will be greatly appreciated.

Regio
  • 284

2 Answers2

5

It isn't true. The example could be the following: $$ A=\begin{pmatrix}1&0\\0&1\end{pmatrix},\quad B=\begin{pmatrix}1&0\\0&0\end{pmatrix}. $$ Their pseudoinverse matrices are $$ A^+=A,\quad B^+=B. $$ Which implies $$ A\ge B,\quad B^+\not\ge A^+. $$

5

It is true if and only if the matrices share the same nullspace.


Assume $null(A)=null(B)$. Let $P\in O(n)$ be the matrix of eigenvectors of $A$ so that the first eigenvectors correspond to the nullspace. Then $$A = P \begin{pmatrix} 0 & 0 \\ 0 & D\end{pmatrix} P^T, \qquad B = P \begin{pmatrix} 0 & 0 \\ 0 & \bar B\end{pmatrix} P^T $$ where $D$ is diagonal with nonzero elements and $\bar B$ is invertible, and they have the same size. Then $$A^\dagger = P \begin{pmatrix} 0 & 0 \\ 0 & D^{-1}\end{pmatrix} P^T, \qquad B^\dagger = P \begin{pmatrix} 0 & 0 \\ 0 & \bar B^{-1}\end{pmatrix} P^T. $$

Then, since $D$ and $\bar B$ are invertible, using the arguments of https://math.stackexchange.com/a/3018669/484640, \begin{align} A\ge B & \text{ iff } D \ge \bar B \\ & \text{ iff } I\ge D^{1/2} \bar B D^{1/2} \\ & \text{ iff } I\le D^{-1/2} \bar B^{-1} D^{-1/2} \\ & \text{ iff } D^{-1} \le \bar B^{-1} \\ & \text{ iff } A^\dagger \le B^\dagger. \end{align}


Now assume $A \ge B$ but that the nullspaces are different, say there exists a vector $x$ with $Ax \ne 0$ but $Bx = 0$. Then $x^T B^\dagger x =0$ by definition of the pseudo inverse of $B$, but $x^T A^\dagger x \ne 0$ by definition of the pseudo inverse of $A$. This implies $x^T A^\dagger x > x^T B^\dagger x = 0$ so $A^\dagger \le B^\dagger$ cannot hold.

jlewk
  • 2,257