The argument given for the first question is correct. Indeed, homomorphic image of a cyclic group is necessarily cyclic. $\mathbb Q$ is non-cyclic so there can't be an onto group homomorphism $\mathbb Z\to\mathbb Q$.
There's no onto group homomorphism $\mathbb Q\to\mathbb Z$ either, but you can prove something stronger i.e., the only group homomorphism $\mathbb Q\to\mathbb Z$ is the trivial one.
Let $f\colon\,\mathbb Q\to\mathbb Z$ be a group homomorphism.
For each $n\in \mathbb Z^+$, we have $\begin{align}f(1)&=f\bigg(\underbrace{\frac{1}{n}+\ldots+\frac{1}{n}}_{\text{$n$ times}}\bigg)\\& = \underbrace{f\!\left(\frac{1}{n}\right)+\ldots+f\!\left(\frac{1}{n}\right)}_{\text{$n$ times}}\\ &= n\,f\!\left(\frac 1n\right)\end{align}\tag*{}$
Thus, for every $n\in \mathbb Z^+$, we have $n\mid f(1)$. It follows that $f(1)=0$.
Now, $0=f(1)=n\,f\!\left(\frac 1n\right)\implies f\!\left(\frac 1n\right)=0$ for each $n\in\mathbb Z^+$.
$\implies f\!\left(\frac mn\right) = m\times 0=0$ for all $m\in\mathbb Z$ and $n\in\mathbb Z^+$.
Thus, $f$ is the trivial map.