Show that the entropy of the multivariate Gaussian $N(x|\mu,\Sigma)$ is given by \begin{align} H[x] = \frac12\ln|\Sigma| + \frac{D}{2}(1 + \ln(2\pi)) \end{align} where $D$ is the dimensionality of $x$.
My solution.
Entropy for normal distribution:
\begin{align} H[x] = -\int_{-\infty}^{+\infty}N(x|\mu,\Sigma)\ln(N(x|\mu,\Sigma)) dx = &&\text{by definition of entropy}\\ = -E[\ln(N(x|\mu,\Sigma))] =\\ = -E[\ln((2\pi)^{-\frac{D}{2}} |\Sigma|^{-\frac12} e^{-\frac12(x - \mu)^T\Sigma^{-1}(x - \mu)})] = &&\text{definition of multivariable gaussian}\\ = \frac{D}{2}\ln(2\pi) + \frac12\ln |\Sigma| + \frac12E[(x - \mu)^T\Sigma^{-1}(x - \mu)] &&\text{the log of a product is the sum of the logs}. \end{align}
Consider the third term:
\begin{align} \frac12E[(x - \mu)^T\Sigma^{-1}(x - \mu)] = \\ = \frac12E[x^T\Sigma^{-1}x - x^T\Sigma^{-1}\mu - \mu^T\Sigma^{-1}x + \mu^T\Sigma^{-1}\mu] = \\ = \frac12E[x^T\Sigma^{-1}x] - \frac12E[2\mu^T\Sigma^{-1}x] + \frac12E[\mu^T\Sigma^{-1}\mu] = \\ = \frac12E[x^T\Sigma^{-1}x] - \mu^T\Sigma^{-1}E[x] + \frac12\mu^T\Sigma^{-1}\mu = \\ = \frac12E[x^T\Sigma^{-1}x] - \mu^T\Sigma^{-1}\mu + \frac12\mu^T\Sigma^{-1}\mu = &&\text{Since $E[x] = \mu$}\\ = \frac12E[x^T\Sigma^{-1}x] - \frac12\mu^T\Sigma^{-1}\mu \end{align}
How can I simplify the term: $E[x^T\Sigma^{-1}x]$ ?
$\Sigma^{-1} = \sum_{i=1}^D \frac{1}{\lambda_i} e_i e_i^T$ Then: $(x - \mu)^T\Sigma^{-1}(x - \mu) = \sum_{i=1}^D \frac{1}{\lambda_i} (x - \mu)^T e_i e_i^T (x - \mu) = \sum_{i=1}^D \frac{y_i^2}{\lambda_i}$
Where: $y_i = e_i^T (x - \mu)$ - scalar. Then we can switch to $dy_i$ coordinates. And after simplification will get just $D$.
– Andreo Nov 26 '16 at 07:39