The Buffalo Way works.
After clearing the denominators, it suffices to prove that
$f(a,b,c,d)\ge 0$ where $f(a,b,c,d)$ is a polynomial. WLOG, assume that $a\le b\le c\le d$.
(1) If $1 \le a$, let $a = 1+s, \ b = 1+s+t, \ c = 1+s+t+r, \ d = 1+s+t+r+u; \ s, t, r, u\ge 0$.
$f(1+s, 1+s+t, 1+s+t+r, 1+s+t+r+u)$ is a polynomial in $s, t, r, u$ with non-negative coefficients. True.
(2) If $a < 1 \le b \le c \le d$, let $a = \frac{1}{1+s}, \ b = 1+t, \ c = 1+t+r, \ d = 1+t+r+u; \ s, t, r, u\ge 0$.
We have
\begin{align}
&(1+s)^4f(\frac{1}{1+s}, 1+t, 1+t+r, 1+t+r+u)\\
=\ & g_1(s, t, r, u) +
128r^2-64rs+320rt+128ru+48s^2-96st\\
&\quad -32su+240t^2+160tu+48u^2
\end{align}
where $g_1(s,t,r,u)$ is a polynomial with non-negative coefficients. It suffices to prove that
$$128r^2-64rs+320rt+128ru+48s^2-96st-32su+240t^2+160tu+48u^2 \ge 0.$$
True. However, hope to see a nice proof of it.
(3) If $a \le b < 1 \le c \le d$, let $a = \frac{1}{1+s+t}, \ b = \frac{1}{1+s}, \ c = 1+r, \ d = 1+r+u; \ s, t, r, u\ge 0$.
We have
\begin{align}
&(1+s+t)^4(1+s)^4f(\frac{1}{1+s+t}, \frac{1}{1+s}, 1+r, 1+r+u) \\
=\ & g_2(s,t,r,u) + 128r^2-128rs-64rt+128ru+128s^2+128st \\
&\quad -64su+48t^2-32tu+48u^2
\end{align}
where $g_2(s,t,r,u)$ is a polynomial with non-negative coefficients. It suffices to prove that
$$128r^2-128rs-64rt+128ru+128s^2+128st-64su+48t^2-32tu+48u^2\ge 0.$$
True. However, hope to see a nice proof of it.
(4) If $a\le b \le c < 1 \le d$, let $a = \frac{1}{1+s+t+r}, \ b = \frac{1}{1+s+t}, \ c = \frac{1}{1+s}, \ d = 1+u; \ s,t,r,u\ge 0$.
We have
\begin{align}
&(1+s+t+r)^4(1+s+t)^4(1+s)^4f(\frac{1}{1+s+t+r}, \frac{1}{1+s+t}, \frac{1}{1+s}, 1+u)\\
=\ & g_3(s,t,r,u) + 32 r^3+384 r^2 s+240 r^2 t+48 r^2 u+1168 r s^2+1552 r s t \\
&\quad -64 r s u+528 r t^2+16 r t u+48 r u^2+1168 s^3+2336 s^2 t-96 s^2 u\\
&\quad +1552 s t^2-128 s t u+144 s u^2+352 t^3+16 t^2 u+96 t u^2+64 u^3\\
&\quad +48 r^2+160 r s+128 r t-32 r u+240 s^2+320 s t-96 s u+128 t^2-64 t u+48 u^2
\end{align}
where $g_3(s,t,r,u)$ is a polynomial with non-negative coefficients. It suffices to prove that
\begin{align}
&32 r^3+384 r^2 s+240 r^2 t+48 r^2 u+1168 r s^2+1552 r s t \\
&\quad -64 r s u+528 r t^2+16 r t u+48 r u^2+1168 s^3+2336 s^2 t-96 s^2 u\\
&\quad +1552 s t^2-128 s t u+144 s u^2+352 t^3+16 t^2 u+96 t u^2+64 u^3\\
&\quad +48 r^2+160 r s+128 r t-32 r u+240 s^2+320 s t-96 s u+128 t^2-64 t u+48 u^2\ge 0.
\end{align}
True. However, hope to see a nice proof of it.
(5) If $a\le b\le c\le d < 1$, let $a = \frac{1}{1+s+t+r+u}, \ b = \frac{1}{1+s+t+r}, \ c = \frac{1}{1+s+t}, \ d = \frac{1}{1+s}; \ s,t,r,u\ge 0$. $(1+s+t+r+u)^4(1+s+t+r)^4(1+s+t)^4(1+s)^4f(\frac{1}{1+s+t+r+u}, \frac{1}{1+s+t+r}, \frac{1}{1+s+t}, \frac{1}{s})$
is a polynomial in $s, t, r, u$ with non-negative coefficients. True.
We are done.