I'm trying to solve this using Laplace transforms by using the relation
$\int_0^\infty \frac{f(x)}{x} dx = \int_0^\infty F(p) dp$
where $F(p) = L[f(x)]$
But recasting it transforms it into a very messy integral.
Any help would be highly appreciated.
I'm trying to solve this using Laplace transforms by using the relation
$\int_0^\infty \frac{f(x)}{x} dx = \int_0^\infty F(p) dp$
where $F(p) = L[f(x)]$
But recasting it transforms it into a very messy integral.
Any help would be highly appreciated.
Hint. Let's consider the Laplace transform of $\displaystyle I(a):=\int_{0}^{\infty}\frac{\cos(ax)}{x^2+1}\:dx$. We have $$ \begin{aligned} \mathcal{L}\left(I(a)\right)(s)&=\mathcal{L}\left(\int_{0}^{\infty}\frac{\cos(ax)}{x^2+1}\:dx\right)(s) \\& = \int_{0}^{\infty}\int_{0}^{\infty}\frac{\cos(ax)}{x^2+1}e^{-as}\:da\:dx \\&= \int_{0}^{\infty}\frac{s}{(x^2+1)(s^2+x^2)}\;{dx} \\&= \frac{\pi}{2(s+1)} \end{aligned}\tag1 $$giving $$ I(a)=\int_{0}^{\infty}\frac{\cos(ax)}{x^2+1}\:dx=\mathcal{L}^{-1}\left(\frac{\pi}{2(s+1)}\right) =\frac{\pi}{2}e^{-a},\qquad a>0, \tag2$$