I assume $a,b,c > 0$.
For $x> 0$,
$$
\sqrt[x]{a^x+b^x+c^x}
=
\left(a^x+b^x+c^x\right)^{1/x}
= e^{\frac{1}{x} \ln(a^x+b^x+c^x) }.
$$
By continuity of the exponential, it is sufficient to compute the limit of the exponent, $\frac{1}{x} \ln(a^x+b^x+c^x)$, when $x\to \infty$.
Without loss of generality, suppose $a$ is greater than $b$ and $c$ (the other two cases are symmetric). Then we have
$$\begin{align}
\frac{1}{x} \ln(a^x+b^x+c^x)
&= \frac{1}{x} \ln\left(a^x(1+\left(\frac{b}{a}\right)^x+\left(\frac{c}{a}\right)^x\right) \\
&= \frac{1}{x} \ln\left(a^x\right)+\frac{1}{x} \ln\left(1+\left(\frac{b}{a}\right)^x+\left(\frac{c}{a}\right)^x\right)\\
&= \frac{x}{x} \ln a+\frac{1}{x} \ln\left(1+\left(\frac{b}{a}\right)^x+\left(\frac{c}{a}\right)^x\right) \\
&= \ln a+\frac{1}{x} \ln\left(1+\left(\frac{b}{a}\right)^x+\left(\frac{c}{a}\right)^x\right) \\
\end{align}$$
Since $b < a$ and $c<a$, we have $1+\left(\frac{b}{a}\right)^x+\left(\frac{c}{a}\right)^x\xrightarrow[x\to\infty]{} 1+0+0=1$, and therefore $\frac{1}{x} \ln\left(1+\left(\frac{b}{a}\right)^x+\left(\frac{c}{a}\right)^x\right)\xrightarrow[x\to\infty]{} 0$. We get that overall,
$$
\frac{1}{x} \ln(a^x+b^x+c^x) \xrightarrow[x\to\infty]{} \ln a
$$
and thus
$$
\exp\left( \frac{1}{x} \ln(a^x+b^x+c^x) \right) \xrightarrow[x\to\infty]{} e^{\ln a} = a.
$$
Now, this was because of our assumption that $a$ was the maximum of $a,b,c$. In general, the answer will be
$$
\exp\left( \frac{1}{x} \ln(a^x+b^x+c^x) \right) \xrightarrow[x\to\infty]{} e^{\ln \max(a,b,c)} = \boxed{\max(a,b,c)}.
$$
You can check it easily; you may have to deal separately where the case where $a,b,c$ are not all distinct, so that you may have $a>b=c$ or $a=b=c$ for instance. The proof above can be easily modified and the result will not change.