$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
The number of $\ds{n}$-steps configurations is given by
\begin{align}
&\sum_{s_{1} = 1}^{2}\ldots\sum_{s_{n} = 1}^{2}
\bracks{s_{1} + \cdots + s_{n} = 10} =
\sum_{s_{1} = 1}^{2}\ldots\sum_{s_{n} = 1}^{2}
\oint_{\verts{z} = 1}{1 \over z^{11 - s_{1} - \cdots - s_{n}}}
\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\oint_{\verts{z} = 1}{1 \over z^{11}}\pars{\sum_{s = 1}^{2}z^{s}}^{n}
\,{\dd z \over 2\pi\ic} =
\oint_{\verts{z} = 1}{\pars{1 + z}^{n} \over z^{11 - n}}\,{\dd z \over 2\pi\ic} =
{n \choose 10 - n}
\end{align}
which is non zero whenever
$\ds{\pars{~n \geq 10 - n \geq 0 \implies 5 \leq n \leq 10~}}$.
The total number of configurations is given by
$$
\sum_{n = 5}^{10}{n \choose 10 - n} =
\sum_{n = 0}^{5}{n + 5 \choose 5 - n} = \bbx{\ds{89}}
$$