1

How to calculate $$\int_{0}^{\infty}\frac{\cos(mx)}{1+x^{4}}\,dx$$ where $m$ is a constant?

Any hint will be appreciated

egreg
  • 244,946
littleZ
  • 1,133

2 Answers2

1

By the residue theorem, $$ \int_{0}^{+\infty}\frac{\cos(mx)}{1+x^4}\,dx = \frac{\pi}{2\sqrt{2}}e^{-|m|/\sqrt{2}}\left(\sin\frac{|m|}{\sqrt{2}}+\cos\frac{|m|}{\sqrt{2}}\right).$$

Jack D'Aurizio
  • 361,689
0

Per $\int_{0}^{\infty}\frac{\cos(m x)}{a^2+x^2}\,dx = \frac\pi{2a} e^{-m a}$, along with $a=e^{-i\frac\pi4 }$ $$ \int_{0}^{\infty}\frac{\cos(m x)}{x^4+1}\,dx = \Im \int_{0}^{\infty}\frac{\cos(m x)}{x^2+a^2}\,dx\\ =\frac\pi2 \Im \ e^{i\frac\pi4 } e^{-m e^{-i\frac\pi4 }} = \frac{\pi}{2}e^{-\frac m{\sqrt2}}\sin\left(\frac{m}{\sqrt{2}}+\frac\pi4 \right) $$

Quanto
  • 120,125