The limit as $n$ approaches infinity of the following functions diverges:
$n! / a^n$
$n! / n^a$
For any fixed integer $a$. How can I show this?
EDIT: The original question was the second bullet point; however I really meant to type the first bullet.
The limit as $n$ approaches infinity of the following functions diverges:
$n! / a^n$
$n! / n^a$
For any fixed integer $a$. How can I show this?
EDIT: The original question was the second bullet point; however I really meant to type the first bullet.
Hint
By ratio test
$$\lim_{n\to+\infty}\frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a^n}{n!}}=0$$
thus the series $\sum\frac{a^n}{n!}$ is convergent and
$$\lim_{n\to+\infty}\frac{a^n}{n!}=0$$
thus
$$\lim_{n\to+\infty}\frac{n!}{a^n}=+\infty$$
For the second, it is easy to prove by induction that
$n!\geq 2^{n-1}$ and
$$\frac{n!}{n^a}\geq \frac{2^{n-1}}{n^a}$$
as the exponential is faster than the polynomial, the limit is $+\infty$.
$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align} \mbox{Similarly,}\quad {n! \over n^{a}} & \sim {\root{2\pi}n^{n + 1/2}\expo{-n} \over n^{a}} = \root{2\pi}n^{1/2}n^{n - a + 1/2}\expo{-n} \to \infty \end{align}
HINT:
For $x$ and $a$ integers with $x>a$ we can write
$$\frac{x!}{x^a}=\left(\frac{x}{x}\frac{x-1}{x}\frac{x-2}{x}\cdots \frac{x-a+1}{x}\right)(x-a)!$$
If $x$ is real and $a$ is an integer, then
$$x!=\int_0^\infty t^{x}e^{-t}\,dt$$
Now, apply L'Hospital's Rule $a$ times.
For a fixed $a$;
$n!=n(n-1)(n-2)(n-3)\ldots (n-(a-1)(n-a)(n-(a+1))\ldots 3.2.1$
So we have $\dfrac{n!}{n^a}=\dfrac{n(n-1)(n-2)(n-3)\ldots (n-(a-1)(n-a)(n-(a+1))\ldots 3.2.1}{n^a}$
$=(1-\dfrac{1}{n})(1-\dfrac{2}{n})\ldots \times f(n)$ where $f(n)>1$ and the product $ \to \infty $as $n\to \infty$
Intuitively, both the numerator and denominator of $\frac {n!}{a^n}$ have $n$ factors. As $n$ gets large, most of the factors in the numerator are much larger than $a$, while all the factors in the denominator are $a$, so the numerator grows faster and the fraction diverges.
To be more rigorous, note that for $n=a^2$, you can pair the factors of $n!$ as $(1,a^2), (2,a^2-1), (3,a^2-2), \ldots (\frac 12a^2-1, \frac 12a^2)$ and the product of each pair is greater than $a^2$, so the whole product is greater than $(a^2)^{a^2/2}=a^{(a^2)}$ and the fraction is greater than $1$. Each upward step in $n$ now multiplies the fraction by something greater than $\frac {a^2}a$, so the fraction diverges.
You can also use Stirling's approximation for the factorial, that $n! \approx \frac {n^n}{e^n}\sqrt{2 \pi n}$ and find $\frac {n!}{a^n} \gt \frac {n^n}{(ae)^n}=\left(\frac n{ae} \right)^n$ which clearly diverges as $n$ gets greater than $ae$