6

Let $A$ be a subset of $\mathbb{R}^n$ then the rearrangement of $A$ denoted by $A^*$ is the ball $B(0,r)$ having the same volume as $A$ i.e if $|A| =|B(0,r)|$ with respect to Lebesgue measure then

$$A^*= B(0,r)$$

Let $f$ be a function from $\mathbb{R}^n$ to $\mathbb{R}$. Then its symmetric decreasing rearrangement $f^*$ is the function defined for $x \in \mathbb{R}^n$ by

$$f^*(x) = \int_0^{\infty} 1_{\{f>t\}^*}(x) dt.$$

Where $1_{\{f>t\}^*}$ is the characteristic function of the set $\{f>t\}^*= B(0,r_t )$ on $\mathbb{R}^n$ for suitable $r_t >0$.

The set $\{f>t\} := \{x \in \mathbb{R}^n: f(x)>t\}$ is called the $t$-level set of the function $f$.

Question. How can I show that $$\{f>t\}^* = \{f^*>t\}\,\,\text{?}$$

This is mentioned to be easy in the book of Elliott Lieb and Loss (Analysis second edition, Graduate Studies in Mathematical, vol 14, American mathematical Society, providence, RI 2001).

Guy Fsone
  • 25,237

2 Answers2

3

Fix $t>0$ et $y\in \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}$. This is equivalent to say that $$c_d|y|^d<|\{|f|>t\}|,\qquad \qquad c_d=|B(0,1)|. $$ Assume that $$\int_{t}^{+\infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds=0.$$ Then $y\not \in \{|f| > s\}^{*}$ for all $s\geq t$. That is, for all $s\geq t$ we have $$c_d|y|^d\geq |\{|f|>s\}| $$ The Fatou lemma implies $$c_d|y|^d\geq |\{|f|\geq t\}|\geq |\{|f|>t\}|.$$ This is in contradiction with the fact that $c_d|y|^d<|\{|f|>t\}|$. Therefore we deduce $$\int_{t}^{\infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds>0.$$ On the other hand, one can check that for every, $0<s< t$ one has $$\left\{x \in \mathbb{R}^n: |f(x)| > t \right\}\subset \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}$$ this entails that, \begin{equation}\label{eq-inclu t-s}\tag{I} \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}\subset \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}^{*}~~~\textrm{for all $s\in (0,t)$}. \end{equation} this implies that,$$ \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) =1 ~~~s\in (0,t)$$

From definition of $f^{*}$, if $y\in \{|f|>t\}^*$ then we have $$\begin{align*} f^{*}(y) &:= \int_{0}^{+ \infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds\\ &= \int_{0}^{t} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds+ \int_{t}^{+\infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds\\ & = \int_{0}^{t} ds+\int_{t}^{+\infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds >t. \end{align*}$$

Whence, $$\left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}\subset \left\{ x \in \mathbb{R}^n:f^{*}(x)> t \right\}.$$ Conversely, suppose, $y\notin \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}$. If $t\leq s$ then analogously to relation \eqref{eq-inclu t-s} we get $$y\notin \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}^{*}.$$ That is for all $s\geq t$ we get $$\mathbf{1}_{\{ | f| > s\}^*}(y)=0$$ Hence necessarily for all $s>0$ such that $ y\in \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}^{*}$ one has $0<s\leq t$. This means that, $$\sup\left\{s>0 : y\in \left\{x \in \mathbb{R}^n: |f(x)| > s \right\}^{*}\right\}\leq t. $$ We then deduce that, $$\begin{align*} f^{*}(y) &:= \int_{0}^{+ \infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds\\ &= \int_{0}^{t} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds+ \underbrace{\int_{t}^{+\infty} \mathbf{1}_{\left\{ | f| > s \right\}^*}(y) ds}_{=0}\leq t \end{align*}$$ that is $f^*(y)\leq t$ or that $y\notin \left\{x \in \mathbb{R}^n: f^*(x) > t \right\}$. We've just prove that,

\begin{equation}\label{eq}\tag{II} \Bbb R^n\setminus \left\{x \in \mathbb{R}^n: |f(x)| > t \right\}^{*}\subset \Bbb R^n\setminus\left\{x \in \mathbb{R}^n: f^*(x) > t \right\}. \end{equation} Which ends the prove by taking the complementary.

Guy Fsone
  • 25,237
  • Hello, I don't see the contradiction for the second direction of the proof when you deduce from $(I)$ that you get $y\in \left{x \in \mathbb{R}^n: |f(x)| > t \right}^{}$. I agree that $y \in {|f| > s}^$ for some $s \in (0,t)$ but that doesn't imply $y\in \left{x \in \mathbb{R}^n: |f(x)| > t \right}^{*}$ – user57 Dec 02 '23 at 14:19
0

First, by definition the rearrangement $f^*$ has the same distribution function as $f$, that is $$|\{f>t\}|=|\{f^*>t\}|.$$

Also, since $f^*$ is a radially decreasing function, its level set $\{f^*>t\}$ is an open ball centered at the origin.

The volume of that ball is $|\{f^*>t\}|=|\{f>t\}|$.

On the other hand, $\{f>t\}^*$ is also an open ball centered at the origin with volume $|\{f>t\}|$. This implies $\{f>t\}=\{f^*>t\}$.

J.R.
  • 18,312