$$I=\int^{\frac{\pi}{2}}_{0}\ln(13-6\sin \theta) d\theta
=\frac\pi 2\ln13+\int^{\frac{\pi}{2}}_{0}\ln(1-\frac6{13}\sin \theta) d\theta$$
By using the expansion $\ln(1-x)=-\sum_{n=1}^\infty\frac{x^n}n$,
$$I=\frac\pi 2\ln13-\sum_{n=1}^\infty\frac{(\tfrac6{13})^n}n\int^{\frac{\pi}{2}}_{0}\sin^n\theta d\theta$$
$$I=\frac\pi 2\ln13-\sum_{n=1}^\infty\frac{B(\frac{n+1}2,\frac12)}{2n}(\tfrac6{13})^n$$
where $B(p,q)=2\int^{\frac{\pi}{2}}_{0}\sin^{2p-1}\theta\cos^{2q-1}\theta d\theta$ is the beta function.
If $n=2m$, $B(\frac{n+1}2,\frac12)=\frac{\Gamma(\frac{2m+1}2)\Gamma(\frac12)}{\Gamma(\frac{2m+1}2+\frac12)}=\frac{\Gamma(\frac{2m+1}2)\pi}{\Gamma(\frac12)\Gamma(m+1)}=\pi\frac{(\tfrac12)_m}{(1)_m}=\pi c_m$ where $c_m={2m\choose m}2^{-2m}$ as defined in this answer and $(a)_m=\frac{\Gamma(m+a)}{\Gamma(a)}$ is the Pochammer symbol.
If $n=2m+1$, $B(\frac{n+1}2,\frac12)=\frac{\Gamma(\frac{2m+2}2)\Gamma(\frac12)}{\Gamma(\frac{2m+2}2+\frac12)}=\frac{\Gamma(m+1)\Gamma(\frac12)}{\frac{2m+1}2\Gamma(m+\frac12)}=\frac{2(1)_m}{(2m+1)(\tfrac12)_m}=\frac2{(2m+1)c_m}.$
The sum in $I$ splits and we have $I=\frac\pi 2\ln13-S_1-S_2$ where
$S_1=\frac\pi 4\sum_{m=1}^\infty\frac{c_m}{m}(\tfrac6{13})^{2m}$ and $S_2=\sum_{m=0}^\infty\frac{1}{(2m+1)^2c_m}(\tfrac6{13})^{2m+1}.$
With similar ideas in this answer, we can show that
$$\sum_{m=1}^\infty\frac{c_m}{m}x^m=\ln4-2\ln(1+\sqrt{1-x}).$$
By plugging $x=\frac{36}{169}$ we have $S_1=\frac\pi 2\ln13-\frac\pi 2\ln\frac{13+\sqrt{133}}2.$
Computation of $S_2$: Since $\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{m=0}^\infty \frac1{(2m+1)c_m}x^{2n+1}$,
$$S_2=\int_0^{\frac{6}{13}}\frac{\arcsin x}{x\sqrt{1-x^2}}dx,$$
$$S_2=\int_0^{\arcsin\frac{6}{13}}\frac{\theta}{\sin\theta}d\theta.$$
Thus,
$$I=\frac\pi 2\ln\frac{13+\sqrt{133}}2-S_2.$$