Denote $f(z)=\theta_3(z)^2$, where $\theta_3(z)=\theta(z/2), \theta(z)=\sum_n q^{n^2}$ are Jacobi's $\theta$-functions.
And $\lambda(z)=\left( \frac{\theta_2(z)}{\theta_3(z)}\right)^4$ is the Legendre modular function, where $\theta_2(z)=\sum_n q^{({n+1/2})^2}$
There is a power series expression
$$f(z)=\sum_{n=0}^{\infty} \binom{2n}{n}\left(\frac{\lambda(z)}{16}\right)^n$$
How to get the expression?