Allow a multinomial distribution as per [1] with event probabilities $p_{1},\ldots ,p_{k}$ and $\Sigma_{i=1}^{k}{ p_{i}}=1 $ and support $X_i \in \{0,\dots,n\}$ such that $ \Sigma X_{i}=n $.
Clearly, $\textstyle {\mathrm{Cov}}(X_i,X_j) = - n \, p_i \, p_j$ when$~~(i\neq j)$
Given real-valued constants $a$ and $b$ where $ 0 \leq a, b \leq 1$, what is $\textstyle {\mathrm{Cov}}(a^{X_i}, b^{X_j})$
$\textstyle {\mathrm{Cov}}(a^{X_i}, b^{X_j}) = ?$