Let $f \in C^\infty_{c}(\mathbb{R})$ such that $\mathrm{supp}(f) \subset B(0,R)$. Prove that
$$ \widehat{f}(\xi)=\int_{-R}^R e^{i x \xi} f(x) dx $$ with $\xi \in \mathbb{C}$ is a holomorphic function in $\mathbb{C}$. Moreover, $|\widehat{f}(\xi)| \leq C e^{R |\mathrm{Im} \xi}|$. In particular, $\widehat{f}(\xi)$, $\xi \in \mathbb{R}$, is real analytic and $\mathrm{supp}(\widehat{f})$ is not compact unless $\widehat{f}(\xi)=0$.
is a bit of time that I do not touch complex analysis, can you help me?
thank you