Let f be a convex function defined on a set I. If $x_1, x_2, ...,x_n \in I$, and $\lambda_1, \lambda_2 ,...,\lambda_n \in [0,1]$ with $\sum_{i=1}^n \lambda_i=1$ then prove that $$ f\Bigg(\sum_{i=1}^n \lambda_i x_i\Bigg) \leq \sum_{i=1}^n \lambda_i f(x_i) $$
I have no idea where to start, except to use the definition of a convex function: $$ f(\lambda x+(1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) $$
Anyone any ideas of how to approach this problem?