Let $(X, d)$ be a metric space, $F$ a closed subset of $X$, and $U$ an open neighborhood of $F$. Define the distance from a point $x \in X$ to $F$ as $$ d(x, F) = \inf_{y \in F} d(x, y), $$ and define the $\varepsilon$-neighborhood of $F$ to be $$ B_d(F, \varepsilon) = \{ x \in X : d(x, F) < \varepsilon\}. $$
Is it true that the $\varepsilon$-neighborhood of $F$ is contained in $U$ for some sufficiently small $\varepsilon$?