$V\subset \mathbb{R}^n $ be open, symmetric and contains 0 . Define $||\cdot||:\mathbb{R}^n \rightarrow \mathbb{R}$ as:
\begin{equation} ||x||=\inf\{ \lambda > 0: \lambda^{-1}x\in V \} \end{equation} for all x $\in \mathbb{R}^n$.
Prove this is a norm $\iff$ $V$ is convex and bounded with respect to the euclidean metric.
Approach:
- $||x||\ge 0$ (Done)
- $||\alpha x||= |\alpha|||x||$ (not done)
- triangle in equality (not done)