1

Let $(U(\mathbb{Z}_n), \cdot)$ the group of the units of $\mathbb{Z}_n$, and $a,b\in U(\mathbb{Z}_n)$. If $\operatorname{ord}(a)=r$, $\operatorname{ord}(b)=s$, $\operatorname{ord}(ab)=m$, $\gcd(r,s)=1$ show that $m=rs$.

Proof:

  • $ab^{rs}=1 \implies m\mid rs \implies rs \ge m$
  • $\forall π\in \mathbb{N^*}:(ab)^π=1 \implies (ab)^{π\ r}=1 \implies b^{π\ r}=1 \implies s|πr \implies s|π$. Working similar, $r|π$. So, $rs|π, \forallπ\in \mathbb{N^*} \implies rs|m \implies m\ge rs$.

Is this proof true?

Chris
  • 3,026

0 Answers0