Let $5\le k<n $.Then $2k$ divides $n(n-1)(n-2)\ldots (n-k+1)$.
Case 1: $\gcd(2,n)=2$ .
For $\forall n$ either $n$ or $n-1$ is even.
Hence $2$ divides $n $ or $n-1$ and thus $2$ divides $n(n-1)(n-2)\ldots (n-k+1)$ and hence $2k$ divides $n(n-1)(n-2)\ldots (n-k+1)$.
Case 2:$\gcd(2,n)=1$ . I am unable to proceed in this case.Please give some hints.