Question: Let $f \ge 0$ be an integrable function on $\mathbb{R}$. Define $g(t) := \displaystyle \int_\mathbb{R} \cos(tx)\ f(x) \; dx$ for $t \ge 0$. Show $g$ is twice-differentiable $\iff \displaystyle \int_\mathbb{R} x^2 f(x) \; dx <\infty$.
Solution: $(\Rightarrow)$ Suppose $g$ is twice-differentiable so that $| g''(0)|<\infty$. Then, \begin{align*} |g''(0)| &= \left\vert \lim \limits_{h \to 0} \dfrac{g(h) -2g(0) +g(-h)}{h^2} \right\vert \\ &= \lim \limits_{h \to 0}\left\vert \dfrac{g(h) -2g(0) +g(-h)}{h^2} \right\vert \\ &= \lim \limits_{h \to 0} \int_\mathbb{R} \left\vert \dfrac{ \cos(hx) -2 + \cos(-hx)}{h^2} f(x) \right\vert \; dx \quad (^* \text{Wrong, see edit}^*)\\ &= \lim \limits_{h \to 0} \int_\mathbb{R} \left\vert \dfrac{2( \cos(hx) -1) }{h^2} \right\vert f(x) \; dx \\ &\ge \int_\mathbb{R} \liminf \limits_{h \to 0} \left\vert \dfrac{2( \cos(hx) -1) }{h^2} \right\vert f(x) \; dx \quad \text{(Fatou)} \\ &= \int_\mathbb{R} x^2f(x) \; dx. \end{align*}
$(\Leftarrow) $ This is where I am sort of stuck. I am doing a standard technique of showing a partial derivative is bounded so I can push the derivative inside the integral using LDCT (Will moving differentiation from inside, to outside an integral, change the result?)
First, note that $g(t)$ is integrable since $$ \left\vert \int_\mathbb{R} \cos(tx) f(x) \; dx \right\vert \le \|f\|_{L^1(\mathbb{R})}<\infty $$
Also, $\left\vert \frac{\partial^2 }{\partial t^2} \cos(tx) f(x) \right\vert = |x^2 \cos(tx) f(x)| \le |x^2 f(x)|,$ which is integrable by assumption. So $g''$ exists, assuming $g'$ does.
But I can't show $g'$ exists because $\left\vert \frac{\partial }{\partial t} \cos(tx) f(x) \right\vert = |x\sin(tx) f(x)| $, which is $\le$ both $|xf(x)|$ and $|x^2 t f(x)|$, neither of which seem to help . . .
If I attack with $g'(t) = \lim \limits_{h \to 0} \dfrac{g(t+h)-g(t)}{h} = \lim \limits_{h \to 0} \displaystyle \int_\mathbb{R} \dfrac{\cos(x(t+h)) - \cos(xt)}{h}f(x) \; dx$, I can't make progress either.
Thanks for the help.
EDIT: Let me fix the $\Rightarrow$ direction. Basically all I need to do is note that $2 - 2 \cos(hx) \ge 0$, so I can still apply Fatou. \begin{align*} -g''(0) &= \lim \limits_{h \to 0} -\dfrac{g(h) -2g(0) +g(-h)}{h^2} \\ &= \lim \limits_{h \to 0} \int_\mathbb{R} \dfrac{ -\cos(hx) +2 - \cos(-hx)}{h^2} f(x) \; dx \\ &= \lim \limits_{h \to 0} \int_\mathbb{R} \dfrac{2( 1-\cos(hx)) }{h^2} f(x) \; dx \\ &\ge \int_\mathbb{R} \liminf \limits_{h \to 0} \dfrac{2(1-\cos(hx)) }{h^2} f(x) \; dx \quad \text{(Fatou)} \\ &= \int_\mathbb{R} x^2f(x) \; dx. \end{align*}