For two vectors $v,w \in \mathbb{R}^3$, the area of the parallelogram is the square root of the Gram determinant $\text{Gram}(v,w)$.
For two three-dimensional vectors you conveniently have
$$\sqrt{\text{Gram}(v,w)} = ||v \times w||$$
where $||.||$ is the euclidian norm.
So in your case you get
$$Vol_2(P(2a+3b, a-2b)) = ||(2a+3b) \times (a-2b)||$$
with (cross product is bilinear, alternating and anti-commutative)
$$
\begin{equation}
(2a+3b) \times (a-2b) = ((2a+3b) \times a) - ((2a+3b) \times 2b) = \\
= \underbrace{(2a \times a)}_{=0} + \underbrace{(3b \times a)}_{=-3 a \times b} - \underbrace{(2a \times 2b)}_{4 a \times b} - \underbrace{(3b \times 2b)}_{=0} = \\ = -7 a \times b = (7, -14, -14)
\end{equation}
$$
thus giving the result $$||(7,-14,-14)|| = \sqrt{49+196+196} = 21$$