4

Let $k$ be a field and $k[x_1,x_2,x_3,y_1,y_2,y_3]$ a polynomial ring in 6 variables over $k$. How to prove that the ideal $(x_1y_2-x_2y_1,x_2y_3-x_3y_2,x_3y_1-x_1y_3)$ is prime in $k[x_1,x_2,x_3,y_1,y_2,y_3]$ ?

user26857
  • 53,190
nero
  • 929

0 Answers0