Is there a closed form for the following sum?
$$\sum_{n=0}^\infty e^{-\sqrt n}$$
Is there a closed form for the following sum?
$$\sum_{n=0}^\infty e^{-\sqrt n}$$
Since we know that $$\int e^{-\sqrt{n}}\,dn=-2 e^{-\sqrt{n}} \left(1+\sqrt{n}\right)$$ we can use Euler-MacLaurin summations.
For example, it will give $$S_n=\sum_{m=0}^n e^{-\sqrt m}=1+\frac{97305549483745747}{21424936845312000\, e}-$$ $$2 \sqrt{n}\,e^{-\sqrt{n}}\Bigg(1+\frac{3}{4 n^{1/2}}+\frac{1}{48 n}-\frac{1}{11520 n^2}-\frac{1}{3840 n^{5/2}} -\frac{503}{1935360 n^3}+O\left(\frac{1}{n^{7/2}}\right) \Bigg)$$ The value of the constant is $\color{red}{2.670}80$
Edit
If we write $$S_n=C_n-2 \sqrt{n}\,e^{-\sqrt{n}}\Bigg(1+\frac{3}{4 n^{1/2}}+\cdots-\frac{503}{1935360 n^3}+O\left(\frac{1}{n^{7/2}}\right) \Bigg)$$ $$T_n=\sum_{m=0}^n e^{-\sqrt m}$$ and adjust the constant $C_n$ in order to have $S_n=T_n$ for small values of $n$
$$ \left( \begin{array}{cc} n & C_n \\ 1 & 2.670339100 \\ 2 & 2.670403221 \\ 3 & 2.670406242 \\ 4 & 2.670406667 \\ 5 & 2.670406766 \\ 6 & 2.670406797 \\ 7 & 2.670406808 \\ 8 & 2.670406813 \\ 9 & 2.670406815 \\ 10 & 2.670406816 \\ \end{array} \right)$$