How can I prove the following claim for any given continues function:
$$ \int_{0}^{\pi} xf(\sin(x))dx = \pi \int_{0}^{\frac{\pi}{2}}f(\sin(x))dx $$
Thanks!
How can I prove the following claim for any given continues function:
$$ \int_{0}^{\pi} xf(\sin(x))dx = \pi \int_{0}^{\frac{\pi}{2}}f(\sin(x))dx $$
Thanks!
$$2\int_0 ^ {\frac{\pi}{2}} f(\sin x)dx = \int_0 ^{\pi} f(\sin x)dx $$ Let $$I = \int_0^ {\pi} \left(xf(\sin x) - \frac{\pi}{2} f(\sin x)\right)dx $$ $$I = \int_0 ^{\frac{\pi}{2}} (x-\frac{\pi}{2}) f(\sin x)dx$$ Using the substitution $u = \pi - x $ and the fact that $\sin(\pi-x) =\sin x$ gives $I = -I$ Thus $I =0$ and the result follows.
$$ \int_{0}^{\pi} xf(\sin(x))dx = \int_{0}^{\pi/2} xf(\sin(x))dx +\int_{\pi/2}^{\pi} xf(\sin(x))dx \\ = \int_{0}^{\pi/2} xf(\sin(x))dx +\int_{0}^{\pi/2} (\pi-x)f(\sin(x))dx . $$