Lemma: Let $r\geq 0$ be an integer. For a fixed integer $m>1$, let $\omega_m$ denotes the $m$-th root of unity $\exp\left(\frac{2\pi \text{i}}{m}\right)$. Then, the polynomial $$\sum_{\left(a_0,a_1,\ldots,a_r\right)\in\{0,1,\ldots,m-1\}^{r+1}}\,\omega_m^{q\,\sum_{i=0}^r\,a_i}\,\left(\sum_{i=0}^r\,a_ix_i\right)^l\tag{*}$$ vanishes identically in $\mathbb{C}\left[x_0,x_1,\ldots,x_r\right]$ for every $l=0,1,2,\ldots,r$ and $q=1,2,\ldots,m-1$. (Here, $0^0$ is interpreted as $1$.)
Using the Multinomial Theorem,
$$\left(\sum_{i=0}^r\,a_ix_i\right)^l=\sum_{\substack{{k_0,k_1,\ldots,k_r\in\mathbb{Z}_{\geq0}}\\{k_0+k_1+\ldots+k_r=l}}}\,\binom{l}{k_0,k_1,\ldots,k_r}\,\prod_{i=0}^r\,a_i^{k_i}x_i^{k_i}\,.$$
Since $l\leq r$, $k_j=0$ for some $j$ for any monomial $\prod_{i=0}^r\,x_i^{k_i}$ in the sum above. Hence,
$$\sum_{a_j\in\{0,1,2,\ldots,m-1\}}\,\omega_m^{q\,a_j}\,\prod_{i=0}^r\,a_i^{k_i}x_i^{k_i}=0\,.$$
Consequently, the polynomial (*) is the zero polynomial.
Corollary: Let $m>1$ and $r\geq 0$ be integers. Then, the polynomial $$\sum_{\left(a_0,a_1,\ldots,a_r\right)\in\{0,1,\ldots,m-1\}^{r+1}}\,\omega_m^{q\,\sum_{i=0}^r\,a_i}\,\left(x+\sum_{i=0}^r\,a_ix_i\right)^l$$ vanishes identically in $\mathbb{C}\left[x,x_0,x_1,\ldots,x_r\right]$ for each $l=0,1,2,\ldots,r$ and $q=1,2,\ldots,m-1$.
The corollary is an immediate consequence of the lemma. A proof consists of the binomial expansion $$\left(x+\sum_{i=0}^r\,a_ix_i\right)^l=\sum_{t=0}^l\,\binom{l}{t}\,x^{l-t}\,\left(\sum_{i=0}^r\,a_ix_i\right)^t\,.$$
Hint: Now, apply the corollary above with $m=2$, $q=1$, $x=n$, $x_i=2^i$ for $i=0,1,2,\ldots,r$, $r=5$, and $l=5$.
This alternative solution is inspired by Kelenner's method. We work in the polynomial ring $\mathbb{Q}[X]$. Note that, for $r=0,1,2,\ldots$, we have $$P_r(X):=\sum_{i=0}^{2^{r+1}-1}\,f_i\,X^i=\prod_{j=0}^{r}\,\left(1-X^{2^r}\right)\,.$$
Denote by $D$ the operator $X\,\frac{\text{d}}{\text{d}X}$. Since $P_r(X)$ is divisible by $(X-1)^{r+1}$, it follows that $D^lP_r(1)=0$ for $l=0,1,2,\ldots,r$. However, this means
$$\sum_{i=0}^{2^{r+1}-1}\,f_i\,i^l=D^lP_r(1)=0$$
if $l$ is a nonnegative integer less than or equal to $r$. Thus, for each $l=0,1,2,\ldots,r$,
$$\sum_{i=0}^{2^{r+1}-1}\,f_i\,(X+i)^l=\sum_{i=0}^{2^{r+1}-1}\,f_i\,\sum_{t=0}^l\,\binom{l}{t}\,X^{l-t}\,i^t=\sum_{t=0}^l\,\binom{l}{t}\,X^{l-t}\,\sum_{i=0}^{2^{r+1}-1}\,f_i\,i^t=0\,.$$