Find all the numbers $n$ such that $\frac{4n-5}{60-12n}$ can't be reduced.
Attempt:
$$\gcd(4n-5,60-12n)=(4n-5,-8n+55)=(4n-5,-4n+50)=(4n-5,45)$$
$$n=1: (4-5,45)=1\quad \checkmark\\ n=2: (3,45)=3\quad \times\\ n=3: (7,45)=1\quad \checkmark\\ n=4: (11,45)=1\quad \checkmark\\ n=5: (15,45)=15\quad \times\\ n=6: (19,45)=1\quad \checkmark\\ n=7: (23,45)=1\quad \checkmark\\ n=8: (27,45)=9\quad \times\\ \vdots$$ So the answer is that it can't be reduced for $n=1,3,4,6,7,..$ i.e
$$\bigg\{n\bigg|n\notin \begin{cases}a_1=2\\a_n=a_{n-1}+3\end{cases}\bigg\}$$
I want to verify that my solution is correct