I know how to solve this problem by using L'Hospital's rule
$$\lim \limits_{ x\rightarrow 0 }{ { x }^{ x } } =\lim\limits _{ x\rightarrow 0 }{ { e }^{ x\ln { x } } } =\lim\limits _{ x\rightarrow 0 }{ { e }^{ \frac { \ln { x } }{ \frac { 1 }{ x } } } } =\lim\limits _{ x\rightarrow 0 }{ { e }^{ \frac { \frac { 1 }{ x } }{ \frac { 1 }{ { x }^{ 2 } } } } } ={ e }^{ 0 }=1,$$
what other different ways can you suggest or show.thanks