How to show that \begin{align} \left| \frac{\int_0^\infty \cos(ax)e^{-x^4} dx}{\int_0^\infty \cos(bx)e^{-x^4} dx} \right| \le 1 \end{align} if $a\ge b \ge 0$.
This is what I did.
One has to show then that \begin{align} \frac{ \left|\int_0^\infty \cos(ax)e^{-x^4} dx \right| }{ \left|\int_0^\infty \cos(bx)e^{-x^4} dx \right|} \le 1 \end{align}
Or that \begin{align} \left|\int_0^\infty \cos(ax)e^{-x^4} dx \right| \le \left|\int_0^\infty \cos(bx)e^{-x^4} dx \right| \end{align} But how to show the last inequality?
