Let $\left(\Omega\ ,\mathcal{F}\ ,\mathbb{P} \right)$ be a probability space with a countable filtration $F=\left\{ \mathcal{F}_0,\mathcal{F}_1,\cdots,\mathcal{F}_n,\cdots \right\}$.
$\left\{ T_n \right\}$ is a sequence (countable infinite) of stopping times.
Let $S_1=\wedge_n{T_n}$ and $S_2=\vee_n{T_n}$ , it is easy to show that $S_1$ and $S_2$ are also stopping times and that $\mathcal{F}_{S_1} = \bigcap_{n}{\mathcal{F}_{T_n}}$ .
It is also easy to show that $\mathcal{F}_{T_1\vee T_2}=\mathcal{F}_{T_1}\vee\mathcal{F}_{T_2}=\sigma\left(\mathcal{F}_{T_1}\cup\mathcal{F}_{T_2}\right)$ , but I wonder whether $$\mathcal{F}_{S_2} = \vee_{n}{\mathcal{F}_{T_n}}$$ still holds.