Call your sequence $a_n$. Let $\Delta a_n$ represent the operation $a_{n+1}-a_{n}$. Note it is possible $\Delta \Delta a_n=2$
In other words if you take the differences of your differences you have:
$$2,2,2,2,2..$$
And we can guess all the terms to be $2$ if we like.
From the binomial theorem we have if and only if $p(n)$ is a degree $n \geq 1$ polynomial then $\Delta p(n)$ is degree $n-1$. So if $\Delta \Delta a_n=2$, $\Delta \Delta a_n$ is degree $0$ then $\Delta a_n$ is degree $0+1=1$ and $a_n$ is degree $1+1=2$.
So:
$$c_2n^2+c_1n+c_0=a_n$$
Now plug in $3$ terms and solve the system of equations. Or if you wish you can just use the inverse of the backwards difference function twice. Note this telescoping sum:
$$\sum_{x=0}^{n-1} \Delta a_n=-a_0+a_n$$
$$a_0+\sum_{x=0}^{n-1} \Delta a_n=a_n$$
So if we take $\Delta a_0$ to represent the first term in the difference sequence $\Delta a_n$ we have:
$$\Delta a_n=7+\sum_{x=0}^{n-1} 2$$
And if we take $a_0$ to be the first term in the sequence $a_n$:
$$a_n=9+\sum_{x=0}^{n-1} 7+\sum_{x=0}^{n-1} \sum_{y=0}^{x-1} 2$$
$$a_n=n^2+6n+9$$
That is, if we take $a_0$ to be the initial term (first one). If you want $a_1$ to be the first term you just need to shift everything to the right one:
$$a_n=(n-1)^2+6(n-1)+9$$
$$a_n=n^2-2n+1+6n-6+9$$
$$a_n=n^2+4n+4$$
$$a_n=(n+2)^2$$
This is a general method. For example say we have:
$$2,8,23,25,..$$
And we want to model it with a polynomial.
Then the difference is :
$$6,15,2,...$$
The difference again:
$$9,-13,..$$
And again
$$-22,..$$
Now suppose this sequence is constant (this will cause us to get a polynomial of lowest degree). Then if we take $a_0$ to be the first term we have:
$$a_n=2+\sum_{x_0=0}^{n-1} 6+\sum_{x_0=0}^{n-1} \sum_{x_1=0}^{x_0-1} 9+ \sum_{x_0=0}^{n-1} \sum_{x_1=0}^{x_0-1} \sum_{x_2=0}^{x_1-1} -22$$
$$=2{n \choose 0}+6{n \choose 1}+9{n \choose 2}+(-22){n \choose 3}$$
$$=2+6 \left( \frac{n}{1!} \right)+9 \left( \frac{n(n-1)}{2!} \right)+(-22) \left(\frac{n(n-1)(n-2)}{3!} \right)$$
See a pattern?
Let me note that $2,6,9,-22$ are the first terms (the initial term with subscript 0) of $a_n,\Delta a_n, \Delta \Delta a_n, \Delta \Delta \Delta a_n$ in this order.