Let $H$ be a Hilbert space over $\mathbb C$. If $T\in B(H)$, how to prove that
$$n(T)=\sup\{|\langle Tx,x \rangle |, \|x\|=1\}$$ is a norm on $B(H)$ and $$n(T)\lt||T||\lt2n(T)\ \textrm{?}$$ I couldn't show that $\|T\|\lt2n(T)$.
Thanks for any hint
Let $H$ be a Hilbert space over $\mathbb C$. If $T\in B(H)$, how to prove that
$$n(T)=\sup\{|\langle Tx,x \rangle |, \|x\|=1\}$$ is a norm on $B(H)$ and $$n(T)\lt||T||\lt2n(T)\ \textrm{?}$$ I couldn't show that $\|T\|\lt2n(T)$.
Thanks for any hint