Suppose I have some series $f(z) = \sum_{k = 0}^\infty a_n(z)$, with $a_i$ holomorphic on $\mathbf{H}$, that is absolutely convergent for all $z \in \mathbf{H}$ and uniformly convergent on compact subsets of the upper half plane $\mathbf{H}$. My lecture notes state that $f(z)$ then is holomorphic as a function on $\mathbf{H}$. But why is that so?
Thanks!