0

g(x)=f(-x), where $g:[-b,-a] \rightarrow R$ and it is given that $f$ is integrable on $[a,b]$

Need to prove that $\int_{-b}^{-a}f(-x)dx$ is integrable if $\int_{a}^{b}f(x)dx$ is.

Is there a way to do this using the properties of integrals?

1 Answers1

0

Let be $f:[a,b]\to \Bbb{R}$, $a\le b$, integrable. Consider the integral

$$\int_{-b}^{-a}f(-x)dx.$$

Changing the variable, we can take $-x=u$, then $dx=-du$ and the integration limits are $b$ and $a$. So

$$\int_{-b}^{-a}f(-x)dx=\int_b^af(u)(-du)=-\int_{b}^af(u)du=\int_a^bf(u)du.$$

Then $g(x)$ is integrable.

Irddo
  • 2,357