Let $A$ be a square complex matrix and let $A=U\Sigma V^*$ be a singular value decomposition. Then $A$ can be written as
$$A=U\begin{bmatrix} \Sigma K & \Sigma L\\ 0 & 0 \end{bmatrix} U^*$$ where $V^* =\begin{bmatrix} K & L\\ M & N \end{bmatrix}U^*$. Note that $KK^*+LL^*=I$.
Question:
Prove that $$A^2=A \iff \Sigma K=I_r$$
$(\Leftarrow)$ is easy by just verification.
While doing the $(\Rightarrow)$ implication, by comparing $A^2$ and $A$ I got
$\left(\Sigma K\right)^2=\Sigma K$ and $\Sigma K \Sigma L=\Sigma L$.
How to proceed further?