Consider the field $\mathbb{F}_q$ where $q=p^k$ for some prime $p$. I have some identities related to binomial coefficients over such a field, which I wish to prove. So, can someone tell me a source where I could read up on these?
An example of the identities that I am looking out for is the following. For some $a$, such that $0 \leq a < q$, $${q(q-1)\choose(q-a)(q-1)} + {(q-1)(q-1)\choose(q-a)(q-1)} + {(q-2)(q-1)\choose(q-a)(q-1)} + . . . + {(q-a)(q-1)\choose(q-a)(q-1)} = 1$$
in $\mathbb{F}_q$. I have some more similar identities that I wish to prove and I would like it if someone could give me a hint / a strategy / a reference for the same. (Please comment if you wish to see more context)