Define the real function $\mathcal{I}:[-1,1]\rightarrow\mathbb{R}$ via the parametric integral
$$\mathcal{I}{\left(a\right)}:=\iint_{[0,\frac{\pi}{2}]^{2}}\mathrm{d}\theta\,\mathrm{d}\varphi\,\sin{\left(\varphi\right)}\arcsin{\left(a\sin{\left(\varphi\right)}\sin{\left(\theta\right)}\right)}.$$
If we perform the integration over $\varphi$ first, we can reduce the integral to an algebraic one by integrating by parts:
$$\begin{align}
f{\left(a;\theta\right)}
&:=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\sin{\left(\varphi\right)}\arcsin{\left(a\sin{\left(\varphi\right)}\sin{\left(\theta\right)}\right)}\\
&=\left[-\cos{\left(\varphi\right)}\arcsin{\left(a\sin{\left(\varphi\right)}\sin{\left(\theta\right)}\right)}\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\frac{\left(-1\right)a\cos^{2}{\left(\varphi\right)}\sin{\left(\theta\right)}}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}\sin^{2}{\left(\theta\right)}}}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\frac{a\cos^{2}{\left(\varphi\right)}\sin{\left(\theta\right)}}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}\sin^{2}{\left(\theta\right)}}}.\\
\end{align}$$
Now we attack $\mathcal{I}{\left(a\right)}$ by changing the order of integration. Given $a\in[-1,1]$, we have
$$\begin{align}
\mathcal{I}{\left(a\right)}
&=\iint_{[0,\frac{\pi}{2}]^{2}}\mathrm{d}\theta\,\mathrm{d}\varphi\,\sin{\left(\varphi\right)}\arcsin{\left(a\sin{\left(\varphi\right)}\sin{\left(\theta\right)}\right)}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\mathrm{d}\varphi\,\sin{\left(\varphi\right)}\arcsin{\left(a\sin{\left(\varphi\right)}\sin{\left(\theta\right)}\right)}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\,f{\left(a;\theta\right)}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\frac{a\cos^{2}{\left(\varphi\right)}\sin{\left(\theta\right)}}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}\sin^{2}{\left(\theta\right)}}}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\,\frac{a\cos^{2}{\left(\varphi\right)}\sin{\left(\theta\right)}}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}\sin^{2}{\left(\theta\right)}}}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,a\cos^{2}{\left(\varphi\right)}\int_{0}^{1}\mathrm{d}y\,\frac{1}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}\left(1-y^{2}\right)}};~~~\small{\left[\cos{\left(\theta\right)}=y\right]}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,a\cos^{2}{\left(\varphi\right)}\int_{0}^{1}\frac{\mathrm{d}y}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}+a^{2}y^{2}\sin^{2}{\left(\varphi\right)}}}.\\
\end{align}$$
Recall that the inverse hyperbolic sine may be defined via
$$\operatorname{arsinh}{\left(z\right)}:=\int_{0}^{z}\frac{\mathrm{d}x}{\sqrt{1+x^{2}}}=z\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1+z^{2}t^{2}}};~~~\small{z\in\mathbb{R}}.$$
Then,
$$\begin{align}
\mathcal{I}{\left(a\right)}
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,a\cos^{2}{\left(\varphi\right)}\int_{0}^{1}\frac{\mathrm{d}y}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}+a^{2}y^{2}\sin^{2}{\left(\varphi\right)}}}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\frac{\cos^{2}{\left(\varphi\right)}}{\sin{\left(\varphi\right)}}\cdot\frac{a\sin{\left(\varphi\right)}}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}}}\int_{0}^{1}\frac{\mathrm{d}y}{\sqrt{1+\frac{a^{2}\sin^{2}{\left(\varphi\right)}}{1-a^{2}\sin^{2}{\left(\varphi\right)}}y^{2}}}\\
&=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\cos{\left(\varphi\right)}\cot{\left(\varphi\right)}\operatorname{arsinh}{\left(\frac{a\sin{\left(\varphi\right)}}{\sqrt{1-a^{2}\sin^{2}{\left(\varphi\right)}}}\right)}\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{\sqrt{1-x^{2}}}{x}\operatorname{arsinh}{\left(\frac{ax}{\sqrt{1-a^{2}x^{2}}}\right)};~~~\small{\left[\sin{\left(\varphi\right)}=x\right]}\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{\sqrt{1-x^{2}}}{x}\operatorname{artanh}{\left(ax\right)}\\
&=\int_{0}^{1}\mathrm{d}x\,\frac{\sqrt{1-x^{2}}}{x}\int_{0}^{1}\mathrm{d}t\,\frac{ax}{1-a^{2}x^{2}t^{2}}\\
&=\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}t\,\frac{a\sqrt{1-x^{2}}}{\left(1-a^{2}x^{2}t^{2}\right)}\\
&=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\frac{a\left(1-x^{2}\right)}{\left(1-a^{2}t^{2}x^{2}\right)\sqrt{1-x^{2}}}\\
&=\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}x\,\left[\frac{1}{at^{2}\sqrt{1-x^{2}}}-\frac{\left(1-a^{2}t^{2}\right)}{at^{2}\left(1-a^{2}t^{2}x^{2}\right)\sqrt{1-x^{2}}}\right]\\
&=\int_{0}^{1}\mathrm{d}t\,\left[\int_{0}^{1}\mathrm{d}x\,\frac{1}{at^{2}\sqrt{1-x^{2}}}-\int_{0}^{1}\mathrm{d}x\,\frac{\left(1-a^{2}t^{2}\right)}{at^{2}\left(1-a^{2}t^{2}x^{2}\right)\sqrt{1-x^{2}}}\right]\\
&=\int_{0}^{1}\mathrm{d}t\,\left[\frac{\pi}{2at^{2}}-\frac{\pi\left(1-a^{2}t^{2}\right)}{2at^{2}\sqrt{1-a^{2}t^{2}}}\right]\\
&=\frac{\pi}{2a}\int_{0}^{1}\mathrm{d}t\,\frac{1-\sqrt{1-a^{2}t^{2}}}{t^{2}}\\
&=\frac{\pi}{2}\int_{0}^{1}\mathrm{d}t\,\frac{a}{1+\sqrt{1-a^{2}t^{2}}}\\
&=\frac{\pi}{2}\left[\arcsin{\left(at\right)}-\frac{at}{1+\sqrt{1-a^{2}t^{2}}}\right]_{0}^{1}\\
&=\frac{\pi}{2}\left[\arcsin{\left(a\right)}-\frac{a}{1+\sqrt{1-a^{2}}}\right].\blacksquare\\
\end{align}$$
Note that setting $a=1$ yields the conjectured value given by the OP:
$$\mathcal{I}{\left(1\right)}=\frac{\pi}{2}\left[\arcsin{\left(1\right)}-1\right]=\frac{\pi^{2}}{4}-\frac{\pi}{2}.$$