I have posted this theorem before but I am re-posting it again because I have a different question.
Theorem 1.9 - Suppose that $(X,M,\mu)$ is a measure space. Let $\mathcal{N} = \{N\in M:\mu(N) = 0\}$ and $\overline{M} = \{E\cup F: E\in M, F\subset N, N\in\mathcal{N}\}$. Then $\overline{M}$ is a $\sigma$-algebra and there is a unique extension $\overline{\mu}$ of $\mu$ to a complete measure on $\overline{M}$.
Claim 1 - $\overline{M}$ is a $\sigma$-algebra
proof:
i.) Since $M$ is a $\sigma$-algebra, $\emptyset\in M\subset \overline{M}$ so $\emptyset\in \overline{M}$.
ii.) Suppose $B\in\overline{M}$ then there is an $E\in M$ such that $B = E\cup F$ where $F\subset N$ and $N\in\mathcal{N}$. Then \begin{align*} X\setminus B &= X\cap B^c\\ &= X\cap (E\cup F)^c\\ &= X\cap ((E^c\cap N^c\cap F^c)\cup(F^c\setminus N^c))\\ &= X\cap ((E^c\cap N^c)\cup (F^c\cap N))\\ &= X\cap ((E\cup N)^c\cup (N\setminus F)) \end{align*} Since $(E\cup N)^c\in M$ and $(N\setminus F)\subset N\in M$ with $\mu(N) = 0$, then $B^c\in\overline{M}$.
iii.) Let $\{B_j\}_{1}^{\infty}\in\overline{M}$ then for each $j$ there is an $E\in M$ such that $B_j = E_j\cup F_j$ where $F_j\subset N_j$ and $\mu(N_j) = 0$. So, $$\bigcup_{1}^{\infty}B_j = \bigcup_{1}^{\infty}(E_j\cup F_j) = \bigcup_{1}^{\infty}E_j \cup \bigcup_{1}^{\infty}F_j$$ Note that $\bigcup_{1}^{\infty}F_j\subset \bigcup_{1}^{\infty}N_j$ and $\mu\left(\bigcup_{1}^{\infty}N_j\right) = 0$. So we have $\bigcup_{1}^{\infty}B_j\in\overline{M}$. Therefore $\overline{M}$ is a $\sigma$-algebra.
Claim 2 - There is a unique extention $\overline{\mu}$ of $\mu$ to a complete measure on $\overline{M}$
Proof:
We first need to show that $\overline{\mu}$ is well-defined. Suppose $E\cup F\in\overline{M}$, set $\overline{\mu}(E\cup F) = \overline{\mu}(E)$. This is well-defined since if $E_1\cup F_1 = E_2\cup F_2$ where $F_j\subset N_j\in\mathcal{N}$. Then we know that $E_1\subset E_1\cup F_1 = E_2\cup F_2 = E_2\cup N_2$ then $E_1\subset E_2\cup N_2$ and so by monotonicity $\mu(E_1)\leq \mu(E_2) + \mu(N_2) = \mu(E_2)$. Also, since $E_2\subset E_2\cup F_2 = E_1\cup F_1 = E_1\cup N_1$ then again by monotonicity $\mu(E_2)\leq \mu(E_1)+\mu(N_1) = \mu(E_1)$. Thus $\overline{\mu}$ is well-defined.
I now need to show that $\overline{\mu}$ is a complete measure on $\overline{M}$ and that $\overline{\mu}$ is the only measure on $\overline{M}$ that extends $\mu$.
Step 1 - Show $\overline{\mu}$ is a measure.
Proof:
i.) $\overline{\mu}(\emptyset) = \overline{\mu}(\emptyset \cup F) = 0$ since $F\subset N$ with $\mu(N) = 0$.
ii.) Let $\{A_n\}_{1}^{\infty}\in\overline{M}$, disjoint, then there is an $\{E_n\}_{1}^{\infty}\in M$ and a sequence $\{F_n\}_{1}^{\infty}\subset N\in\mathcal{N}$ such that $A_n = E_n\cup F_n$ for all $n$. Note from part (iii.) of claim 1, $\cup_{1}^{\infty}F_n\subset \cup_{1}^{\infty}N_n$. Thus, \begin{align*} \overline{\mu}\left(\bigcup_{1}^{\infty}A_n\right) = \overline{\mu}\left(\bigcup_{1}^{\infty}E_n\cup F_n\right) &= \overline{\mu}\left(\bigcup_{1}^{\infty}E_n\cup \bigcup_{1}^{\infty}F_n\right)\\ &= \overline{\mu}\left(\bigcup_{1}^{\infty}E_n\right)\cup \overline{\mu}\left(\bigcup_{1}^{\infty}F_n\right)\\ &= \sum_{1}^{\infty}\overline{\mu}(E_n) + \sum_{1}^{\infty}\overline{\mu}(F_n)\\ &= \sum_{1}^{\infty}\overline{\mu}(A_n) \end{align*}
Thus $\overline{\mu}$ is a measure.
Step 2 - Show $\overline{\mu}$ is a complete measure.
Proof:
Let $A\subset X$ and suppose there is an $B\in\overline{M}$ such that $A\subset B$ and $\overline{\mu}(B) = 0$. Set $B = E\cup F$ where $E\in M$ and $F\subset N\in M$ with $\mu(N) = 0$. Since $A\subset B = E\cup F = E\cup N$ since $F\subset N$ then by monotonicity $\mu(A)\leq \mu(E) + \mu(N) = \overline{\mu}(E) + 0 = \overline{\mu}(E)\leq \overline{\mu}(B) = 0$. Thus $A\in \overline{M}$?
Step 3: Show $\overline{\mu}$ is a unique extention of $\mu$
Not exactly sure how to show this or if I already have shown this.
These are the steps I have taken, please let me know if this is the correct sequence or any other additional comments that you have in regards to my proofs.