Let $V=\mathbb C^2$ with standard basis $\{e_1,e_2\}$. Are there $v,w\in V$ s.t. $e_1\otimes e_1+e_2\otimes e_2\in V\otimes V$ can be written as $v\otimes w$
Is the answer no ?
for example if $v=c_1e_1+c_2e_2$ then
$v\otimes w=c_1e_1\otimes w+c_2e_2\otimes w=e_1\otimes c_1w+e_2\otimes c_2w$ is this true ?
and by uniqueness $c_iw=e_i$ then we reach a contradiction ?
Is this always valid, no matter what $V$ is ?