$N$ is a continuous local martingale and $T_c:=\inf\left\{t>0:\left[N\right]_t>c\right\}$, $c>0$ . I need to show that the stochastic exponential $\mathcal{E}(-N)$ is a uniformly integrable martingale if and only if $$ \liminf_{c\rightarrow \infty}\;\mathbb{E}\left[\mathcal{E}(-N)_{T_c}1_{\{T_c<\infty\}}\right]=0.$$
Do I have to use Girsanov? How can I prove this?
Any helps are appreciated.